
 

199 

 

Volume: 14, July-December 2022 

 

INTERNATIONAL JOURNAL OF RESEARCH IN MEDICAL SCIENCES & TECHNOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

INTERNATIONAL JOURNAL OF RESEARCH IN MEDICAL 

SCIENCES & TECHNOLOGY 

e-ISSN:2455-5134; p-ISSN: 2455-9059 

A Comprehensive Analysis Of The Techniques In Unsupervised 

Machine Learning For Removing Artefacts In Electrodermal 

Activity  

Krishna Rathi 

Anil Surendra Modi School of Commerce, Narsee Monjee Institute of Management Studies, 

Mumbai 

 

Paper Received: 28 October 2022; Paper Accepted: 21 November 2022; 

Paper Published: 24 December 2022 

 

 

DOI: http://doi.org/10.37648/ijrmst.v14i01.022 

 

How to cite the article:  

Krishna Rathi, A Comprehensive Analysis Of The 

Techniques In Unsupervised Machine Learning 

For Removing Artefacts In Electrodermal 

Activity,  IJRMST, July-December 2022, Vol 14, 

199-208, DOI: 

http://doi.org/10.37648/ijrmst.v14i01.022 



 

200 

 

Volume: 14, July-December 2022 

 

INTERNATIONAL JOURNAL OF RESEARCH IN MEDICAL SCIENCES & TECHNOLOGY 

 

 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

The data are more prone to unforeseen and 

unpredictable sources of artefact and 

interference as it becomes more usual to 

collect physiological time series data 

outside of controlled laboratory settings in 

increasingly complicated naturalistic 

contexts. Most of these artefacts are easily 

visible to the unaided eye with little 

practice. Nevertheless, efforts to 

mechanise observables, like thresholding 

signal value or signal derivative, are not 

consistent between datasets and patients. 

In several other contexts, supervised 

learning—in which machine learning 

models use labelled training datasets to 

learn how to distinguish between signal 

and artifact—has proven to be extremely 

effective [1]. In the case of artefact 

detection, however, supervised learning is 

labour expensive and unfeasible since a 

large number of training datasets require 

the manual labelling of each short time 

increment of data. However, the majority 

of physiological time series data have 

clearly visible artefacts, indicating that 

artifactual data differ significantly from 

genuine signals. Since labelled training 

ABSTRACT 

 

In any data preprocessing pipeline for physiological time series data, artefact detection 
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sets are not necessary, unsupervised 

machine learning techniques provide an 

alternative that meets time and human 

labour restrictions while enabling the 

learning of more complicated patterns that 

are not explicitly documented [2]. 

In this study, we use only 12 well-defined 

characteristics to show the effectiveness of 

unsupervised learning algorithms for 

artefact detection in electrodermal activity 

(EDA) datasets [3]. Six human participants 

had lower abdominal surgery, and these 

data were continually gathered during the 

procedure. As a result, they were 

particularly vulnerable to motion and 

surgical cautery-related artefacts, which 

resulted in significant and obvious 

deflections in the data. To make matters 

more complicated, there are times when 

the EDA remains intact but displaced in 

between the huge deflections, even if these 

artifactual deflections are readily apparent. 

Furthermore, it is unclear where each 

deflection starts and ends. Lastly, different 

people and datasets have different 

deflections in terms of their amplitude, 

sharpness, and direction. An example 

dataset with labelled artefact attributes is 

shown in Figure 1. 

The techniques currently available for 

removing artefacts from EDA are 

constrained and unique to the datasets they 

were tested on [4–8]. Typically, these 

datasets were gathered in experimental 

environments that were either completely 

or partially controlled. None possess the 

level of artefact that this study does. It 

should come as no surprise that these 

procedures, when applied to these data, are 

not sufficient to totally eliminate the 

artefact. To emphasise resilience across 

research contexts and practicality of usage, 

no supervised learning approaches were 

used in this work. 

In this study, we evaluated isolation forest 

[9], Knearest neighbour (KNN) distance 

[10], and 1-class support vector machine 

(SVM) [11] as three unsupervised machine 

learning techniques for artefact detection. 

For every half-second window, we 

established a set of 12 attributes that 

served as inputs for all unsupervised 

learning techniques. These 12 features 

were created by adding features that codify 

what is observably different by eye and 

using features already employed by current 

methods. Additionally, we contrasted the 

results with the current approaches. We 

discovered that none of the previous 

techniques could successfully remove 

heavy artefact from EDA data across all 6 

subjects, but the unsupervised machine 
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learning algorithms using the features we 

defined could. 

We go over the specifics of our datasets, 

identified features, and how we 

implemented the unsupervised learning 

methods in Methods. In the Results 

section, we present the EDA datasets both 

pre- and post-artifact, utilising every 

technique covered in the paper (including 

pre-existing techniques). Lastly, we 

discuss the consequences of our study and 

our ideas for further research in the section 

titled Discussion and Conclusion. 

METHODS 

A. Information  

We used EDA data from six subjects—two 

of whom were female—for this 

investigation, obtained in accordance with 

a procedure that was authorised by the 

Human Research Committee at 

Massachusetts General Hospital (MGH). 

At MGH, all participants were having 

laparoscopic gynaecologic or urologic 

surgery. Using the Thought Technology 

Neurofeedback System [12], the EDA data 

were recorded from the first two digits of 

each subject's left hand at 256 Hz, 

beginning prior to the administration of 

anaesthesia and ending shortly after 

extubation. An example of raw data from a 

single individual is shown in Figure 1. The 

use of surgical cautery and movement at 

the start and finish, including placement, 

were the primary contributors of artefact. 

Every time cautery was turned on or off, 

the data showed a discernible deflection. 

Matlab 2020b was used to analyse all of 

the data. 

B. Characteristics and Methods of 

Unsupervised Learning  

Table 1 contains a list of the 12 qualities 

that were defined using literature guidance. 

To match the timing of individual 

artefacts, these features were estimated for 

each dataset for a 0.5 second window (128 

samples). Three unsupervised learning 

techniques were then fed these feature 

vectors as inputs. 

Using Euclidean distance and K of 50 in 

this example, KNN distance calculates the 

average distance between each feature 

vector and the K nearest feature vectors in 

the data set [10]. It is predicted that 

artifactual data will have a higher KNN 

distance than regular data [10]. While 1-

class SVM is trained on data that is all 

labelled as a single class reflecting 

"normal" data, it is different from standard 

SVM. These might potentially include 

anomalies that are thought to be 

uncommon [11]. 90% of the data in this 
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instance were used to train the 1-class 

SVM, with the exception of the 10% with 

the largest KNN distance. Similar to 

random forests, isolation forests rank each 

feature vector as a leaf in a forest of 

decision trees by calculating the average 

length of the path. It is assumed that path 

lengths in artifactual data are shorter than 

in regular data [9].  

The isolation scores in this instance were 

calculated as the median of ten forests, 

with each isolation forest having 100 

decision trees. 

TABLE I. FEATURES 

For every window of data, the three 

unsupervised learning techniques produced 

scores that indicated how anomalous that 

particular portion of the data was (the 

isolation forest scores, or IF scores, were 

made negative to match the directionality 

of the others). The process's final stage 

involved setting a threshold for each 

subject's scores in order to identify 

artefact. The method used to choose these 

thresholds was based on the realisation that 

the parts of the data that are classified as 

artefacts drop non-continuously, in 

discontinuous leaps, as the threshold is 

raised for each dataset. Since the inter-

artifact interval distribution would get 

more skewed as the proportion artefact 

drops, this was taken advantage of by 

computing the skewness and kurtosis (3rd 

and 4th moments) of the distribution 

across thresholds. 

We examined the criteria for local maxima 

in skewness and kurtosis (significant 

change in labelled artefact). The threshold 

determination process was optimised to 

verify no more than five criteria for each 
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unsupervised learning method per subject 

by using a binary search strategy within 

this collection of thresholds. Visual 

inspection was used to determine the 

ultimate threshold, which guaranteed 

artefact eradication. 

The artefact was located and eliminated, 

and then linear interpolation was used to 

fill in the gaps and produce continuous 

data. The linearly interpolated mean of the 

data at that point was used to translate any 

"islands" of data that had moved uphill or 

lower as a result of artifactual deflection. 

In the end, we contrasted our approach 

with three other approaches that are 

currently in use: wavelet decomposition 

[6,7], variational mode decomposition 

[4,5], and straightforward hardcoding of 

heuristic rules based on thresholding the 

data derivative. 

RESULTS 

The outcomes of the three unsupervised 

techniques for each of the six participants 

are compiled in Table II. The maximum 

contiguous length of artefact and the 

proportion of artefact from 0 to 1 are 

provided for each subject and method. For 

each participant, the optimal approach is 

indicated in bold by the shortest 

contiguous length of artefact and the 

smallest fraction of artefact removed 

(removing the least amount of extra 

signal).  

Figure 2. Uncorrected and corrected EDA for all 6 subjects. 
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For three of the six subjects, isolation 

forest proved to be the most effective 

approach; for one subject, each of the 

KNN distance and 1-class SVM 

techniques was equally effective. The 

longest contiguous artefact varied from 6 

seconds to 106 seconds, while the 

quantities of artefact varied from less than 

1% to slightly over 10% for every 

participant. 

TABLE II.  SUMMARY OF RESULTS 

 

All six participants' EDA data, both 

uncorrected and final corrected, are 

displayed in Fig 2. Although the artifact's 

degree differed throughout participants, we 

were always able to eliminate it. An 

example of determining the ideal threshold 

for Subjects 2 and 4 using the kurtosis of 

the inter-artifact interval distribution is 

presented in Fig. 3. Based on a visual 

evaluation of the corrected EDA data, the 

highlighted values were chosen as the final 

thresholds after testing the local maxima of 

the kurtosis, as depicted in Fig 3. 
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Figure 3. Use of kurtosis of inter-artifact interval distribution to select thresholds for 

Subjects 2 and 4. IF score refers to isolation forest score. 

Lastly, for Subjects 2 and 4, Fig. 4 

compares our approach with a number of 

other methods now in use. Only our 

method completely removed the artefact 

among the methods compared; hardcoding 

heuristic rules to threshold the derivative 

of the EDA signal or thresholding the 

EDA signal at 0 were both ineffective. 

Variational mode decomposition and 

wavelet decomposition were the only 

methods that showed some effectiveness. 

DISCUSSION 

In this work, we employed unsupervised 

machine learning techniques together with 

a collection of 12 features that we 

established in order to eliminate 

movement-related artefact and heavy 

cautery from EDA data that was obtained 

from 6 patients during surgery. Three 

unsupervised learning techniques—

isolation forest, KNN distance, and 1-class 

SVM—were contrasted with three other 

approaches that had already been 

developed: wavelet decomposition, 

variational mode decomposition, and 

hardcoded heuristic rules. Only the 

unsupervised learning techniques were 

able to completely eliminate the artefact 

for each of the six subjects. We minimised 

the quantity of surplus EDA signal deleted 

together with artefact to determine which 

unsupervised learning strategy was 

optimum for each individual. 

This approach is noteworthy since it 

eliminated heavy artefact while 

eliminating the need for human labelling 

of a training data set. Furthermore, our 

approach made it possible to preserve as 



 

207 

 

Volume: 14, July-December 2022 

 

INTERNATIONAL JOURNAL OF RESEARCH IN MEDICAL SCIENCES & TECHNOLOGY 

much of the genuine EDA signal as 

possible, even when it was split up 

throughout different artefact portions. The 

actual percentage of data recognised as 

artefact, even in circumstances of visually 

intense artefact, was probably 10% or less; 

any thresholding-based approach would 

have probably eliminated a far larger 

percentage of the data, including legitimate 

EDA signal.  

Additionally, the majority of currently 

used techniques use decomposition 

algorithms that have the ability to alter any 

part of the signal, including those that are 

obviously artifact-free.  

 

Figure 4. Comparison between different methods for Subjects 2 and 4. 

In contrast, non-artifact areas of the raw 

data remain unaltered by our method. The 

longest continuous artefact was less than 

30 seconds for 5 out of the 6 patients and 

less than 20 seconds for 3 out of 6 

subjects, indicating that the majority of 

this artefact was eliminated in extremely 

brief parts. 

The tonic and phasic components, which 

include complimentary information and 

function at separate timeframes, are the 

two components that are commonly used 

to analyse EDA [3]. Short stretches of 

artefact allow for easy interpolation of the 

tonic component, which drifts 

progressively over tens of seconds to 

minutes [3]. Short data lengths (less than 

30 seconds) for phasic EDA are unlikely to 

contain more than a few pulses [3]. 

Moreover, even in cases when a few pulses 

are absent for brief periods of time, 
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dynamic approaches can calculate the 

mean and standard deviation of pulse rate 

over time and adjust the estimate of 

uncertainty accordingly [13]. 

Lastly, our approach only utilised 12 

features per window, and a large number 

of these features were duplicated in other 

approaches. But with each dataset, our 

approach enabled AI to "learn" the 

distinctions between artefact and signal. 

The physiology of EDA data was taken 

into consideration when developing these 

12 aspects. Our approach is readily 

extendable to other types of "easily 

visible" artefact in other physiological data 

modalities, such ECG and EEG. 

Awareness of the physiology and types of 

artefact in the data can help define custom 

features. 
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